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Abstract: The paper corrects a few errors occurring in the calculations of CALLAWAY J on the average potential of a Wigner 

solid. With respect to the monoatomic bcc and fcc metals, a theory of calculating the average potentials of them is established, 

and the theoretical results demonstrate that the average potential is directly proportional to the reciprocal of the lattice constant of 

the crystal. Moreover, the paper performs a great deal of calculations of the average potentials of various bcc and fcc metals, and 

obtains a lot of numerical results which are valuable for applications. 
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1. Introduction 

The average potential of a crystal is an indispensible part of 

calculating the energy band, electrostatic energy or 

electrostatic binding energy of the crystal. It can be regarded 

as an approximation of zero order disturbance of the Hamilton 

of the electron in crystals. With respect to the calculation of 

electrostatic potential energy without the consideration of the 

average potential or regard it as zero, it will result in 20% even 

more corrections to the result.[1] Therefore, calculations of 

the average potential of crystals is one of the important and 

valuable subjects in the research field of the solid theory. The 

calculation about crystals is very complex, people hope 

explore and establish new theories to simplify the calculations. 

Wigner solid is a theoretical model, and similar to the plasma 

state. Because Wigner solid can be applied to many physical 

phenomena, such as inversion layers near the surface of 

semiconductors; an electron crystal slightly above a free 

surface of liquid helium subjected to a perpendicular electric 

field; white dwarf stars; and crusts of pulsars. It therefore 

attracts interesting and a lot of studies.[1-6] Wigner solid 

model is favorably applied to metals, because electrons in 

metals are free moving, so possibly toward to the uniform 

distribution of negative charges. CALLAWAY J calculated out 

the potential of an electron at Γ point of the BZ (Brillouin zone) 

for monoatomic bcc metals by use of this model, actually, it is 

identical with the average potential of the crystals,[7-8] but 

there are errors in his calculation theory; in Ref. [2, 5], 

CALLAWAY J et al. misinterpreted the potential function 

( )V r
→

 in Poisson equation as the function of potential energy. 

Besides, CALLAWAY J misused the calculation result of Ref. 

[1] to 
2 31

r d r
Ω ∫∫∫ , because the integral zone chosen by Ref. 

[1] is the proximity cell whose volume is 
32a , but the integral 

zone chosen by CALLAWAY Jis the general cell whose 

volume is 
31

2
a . The both zones are different from each other, 

so it is necessary to recalculate the integral. In consideration 

with most of metals are bcc or fcc lattice, the discussions of 

this paper will restrict to the average potentials of bcc and fcc 

metal crystals. 

2. Wigner Solid 

For the convenience of calculations, the present discussions 

merely consider monoatomic bcc and fcc metals. The 

so-called Wigner solid for the crystal of ionic lattice is 

composed of the point charge with positive charge | |Z e ( e is 

the charge of an electron) resting at the lattices of the crystal 

and the background with uniform distribution of the negative 

charges [1-2], the quantity of negative charges in a cell is 

| |Z e− , the whole crystal is neutral. Z =atomic number－

numbers of electrons inside the atomic core. The potential 

function of an electron in the crystal is determined by the 

Poisson’s equation: [9] 
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0

1
( ) ( )

r

V r rρ
ε ε

→ →
∆ =－ ,           (1) 

where ( )rρ
→

represents the charge density in the crystal, 0ε and

rε respectively represent the dielectric constant in vacuum 

and the relative dielectric constant of the metal, for general 

metals, rε ＜10. Either of ( )V r
→

and ( )rρ
→

is the periodic 

function, using the Fouier transformation, they are expanded 

as: 

( ) ( )exp( )s s

s

V r V K i K r
→ → → →

= ⋅∑ ; ( ) ( )exp( )s s

s

r K i K rρ ρ
→ → → →

= ⋅∑ . (2) 

The Fouier coefficients of ( )V r
→

and ( )rρ
→

are respectively 

31
( ) exp( ) ( )s s cV K i K r V r d r

→ → → →
= − ⋅

Ω ∫ ,        (3) 

and 

31
( ) exp( ) ( )s s cK i K r r d rρ ρ

→ → → →
= − ⋅

Ω ∫ .       (4) 

Choosing the cell as the elementary unit, where sK
→

 notes 

any reciprocal vector, ( )c rρ
→

notes the charge density in a cell, 

Ω  notes the volume of a cell. ( )cV r
→

 is the potential term 

around every cell as the center. ( )V r
→

 can be written as: 

( ) ( )cV r V r Rµ
µ

→ → →
= −∑ .           (5) 

Similarly, ( )rρ
→

can be written as the sum of every cell term: 

( ) ( )cr r Rµ
µ

ρ ρ
→ → →

= −∑ .           (6) 

Substituting eq.(2) into eq. (1), it obtains 

2

0

1
( ) ( )s s s

r

V K K Kρ
ε ε

−→ → →
= ⋅ ⋅－ .         (7) 

The theoretical calculations are very similar for various 

special points in BZ (Brillouin zone), the present calculations 

merely consider Γ( sK
→

= 0) point in BZ, it can be found that 

when sK
→

= 0, eq.(3) represents the average potential of the 

crystal. [2, 7-8] This is necessary to be calculated if we want 

to calculate the energy band or electrostatic potential of the 

crystal by use of the theory of disturbance. Regarding sK
→

 of 

eq. (7) is the continuous variable, we define that (0)V  is the 

value of eq.(7)while 0sK
→

→ . Leaving off the lower note of

sK
→

, in terms of eq. (7), 

2
0 0

1 ( )
(0) lim

r K

K
V

K

ρ
ε ε →

→

→→
=－ .           (8) 

From eq. (4), expanding exp( )si K r
→ →

− ⋅  and leaving off the 

lower note s, it arrives: 

3 3

2

2 2 3

1
( ) [ ( ) ( )( )

( )cos ].
2

⋯

c c

c

K r d r i r K r d r

K
r r d r

ρ ρ ρ

ρ θ

→ → → → →

→
→

= − ⋅ −
Ω

+

∫∫∫ ∫∫∫

∫∫∫

 (9) 

Whereθ  represents the angle between K
→

and r
→

, Because 

the charge distribution in a cell of the crystal is neutral, the 

first integral is equal to zero. Besides, there is the symmetry of 

space inversion in a cell, thus the second integral is also zero; 

actually, (0)V should be a real number, the second term of 

eq.(9) cannot be considered. Substituting eq. (9) into eq. (8), 

while 0K
→

→ , we get 

2 2 3

0

1
(0) ( ) cos

2
c

r

V r r d rρ θ
ε ε

→
=

Ω ∫∫∫ ,     (10) 

Where 2
2cos (cos )

1 2

3 3
Pθ θ= + , 2 (cos )P θ is the second 

Legendre polynomials. Eq.(10)can be written as: 

2 3
2

0

1
(0) [1 (cos )] ( )2

6
c

r

V P r r d rθ ρ
ε ε

→
= +

Ω ∫∫∫ .     (11) 

3. Calculating Bcc Metals 

The charge distribution is uniform in the cell of crystals, it 

has the spherical symmetry, all the cell is neutral charge. 

Therefore, for the bcc metal crystals, the charge density in a 

cell can be written as [5, 7]
 

1
( ) | | [ ( ) ]c r Z e rρ δ
→

= −
Ω

.          (12) 

( )c rρ
→

 is cubic symmetry, substituting it into eq.(11) for 

calculations, the integral containing 2 (cos )P θ will be equal to 

zero, thus 

2 3

2
0

| |
(0)

6 r

Z e
V r d r

ε ε
= −

Ω ∫∫∫ .       (13) 
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With respect to the integral 
2 31

r d r
Ω ∫∫∫ ,

3

2

aΩ = , we use 

the spherical approximation for the calculations [1-2]. The 

present calculations obtain the spherical radius

0.4923846sr a≈ . It therefore calculated out the integral 

2 3 21
0.1454762  r d r a≈

Ω ∫∫∫ ,        (14) 

This result is consistent with the data provided by Ref.[2]. 

Eventually, it can be obtained from eq. (13) that the average 

potential of bcc metal crystals is: 

10 1
(0) .8 77446 10b

r

Z
V

aε
−= − × ⋅ ⋅ .        (15) 

Eq. (15) shows that the average potential of bcc metals is 

proportional to 
1

a
 ( a  is the lattice constant of the crystal), 

this is also consistent with the conclusion of other relative 

reference [5]. The paper performed numerical calculations for 

some bcc metals (superconductor elements), the results as 

shown as TABLE 1. 

Table 1. The numerical calculation results about the average potentials of various bcc metals. 

Metals 
a  Z b ionic polarizability rε d (0)bV  

(experiment, nm)a  (10-3 nm3 )c  (V) 

Li(78K) 0.349(78K) 1 0.029 1.0172 －2.4717 

Na(5K) 0.423(5K) 1 0.179 1.0606 －1.9558 

K (5K) 0.523(5K) 1 0.839 1.1550 －1.4526 

Fe(α) 0.287 8 0.336(3+)  1.4055 －17.4019 

Rb(5K) 0.559(5K) 1 1.40 1.2159 －1.2910 

Nb 0.330 5 0.261(5+) 1.1944 －11.1308 

W 0.316 6 0.280(6+) 1.2409 －13.4260 

Cs 0.605 1  2.42  1.3023 －1.1137 

Ba 0.502  2 1.55(2+) 1.3432 －6.6026 

Ta 0.331 5 0.358(5+) 1.2705 －10.4325 

Mo 0.315 6 0.19(6+) 1.1610 －14.3956 

V 0.302 5 0.126(5+) 1.1196 －12.9754 

a. See Ref.[10], the notes 78K and 5K on the right of lattice constants mean the temperature of the measurements, and others are measured in the room 

temperature. 

b. Z =atomic number－the numbers of electrons in the atomic core. 

c. See Ref.[11]. 

d. rε  in TABLE 1 are theoretical results calculated by use of the Clausius –Mossotti formula in Ref.[10] and the ionic polarizabilities of metals.

4. Calculating Fcc Metals 

With respect to fcc metals,
3

4

aΩ = , using spherical 

approximation to calculate the integral of eq. (13)

2 31
r d r

Ω ∫∫∫ , from calculations we get the spherical radius 

0.3906694sr a≈ , thus 

2 3 21
0.0914843r d r a≈

Ω ∫∫∫ .        (16) 

From eq. (13) it eventually obtains 

10 1
(0) .11 035847 10f

r

Z
V

aε
−= − × ⋅ ⋅ .     (17) 

The paper performed numerical calculations for some fcc 

metals, their results are shown in TABLE2. 

Table 2. The numerical calculation results about the average potentials of some fcc metals. 

Metals a  Z b ionic polarizabilities rεεεε d (0)fV  

 (experiment, nm)a  (10-3nm3)c  (V) 

Cu 0.361 1  0.428 1.5395 －1.9857 

Ni 0.352 8 0.386(2+) 1.5223 －16.4760 

Al 0.405 3 0.054(3+) 1.0414 －7.8497 

Ca 0.558 2 0.472(2+) 1.1431 －3.4603 

Rh 0.380 8 0.667(3+) 1.7673 －13.1462 

Pb 0.495 4 0.618(4+) 1.2800 －6.9671 

Ce 0.516 4 1.03(3+) 1.4310 －5.9783 

Ag 0.409 1  1.72(1+) 3.1833 －0.8476 

a. See Ref. [10]. 

b. Z =atomic number－numbers of electrons in atomic core. 

c. See Ref. [11]. 

d. rε  in TABLE 2 are the theoretical results calculated by Clausius – Mossotti formula in Ref.[10] and the electropolarizabilities. 
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5. Conclusion 

As a supposing model Wigner solid has been extensively 

applied in research fields of solid state theory. With respect to 

monoatomic bcc and fcc metals, the paper calculated and 

derived the formulas of the average potentials eq. (15) and eq. 

(17), which can be respectively and directly applied to bcc and 

fcc metals. Moreover, it performed the numerical calculations 

of average potentials for some bcc and fcc metals, and the 

results are shown in TABLE 1 and TABLE 2. Although it has 

not found the experimental data and other theoretical results to 

compare with, it can be found from eq. (15) and eq. (17) that 

the average potentials of metals are proportional to the 

reciprocal of their lattice constants, this result is consistent 

with the conclusion of Ref. [5]. The theory established by this 

paper can similarly applied to the metals with other lattice. 

This work was supported by the foundation of scientific 

research of Hunan Normal University (number: 29000631). 
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